Minimally Supported Frequency Composite Dilation Wavelets
نویسنده
چکیده
Abstract. A composite dilation wavelet is a collection of functions generating an orthonormal basis for L2(Rn) under the actions of translations from a full rank lattice and dilations by products of elements of non-commuting groups A and B. A minimally supported frequency composite dilation wavelet has generating functions whose Fourier transforms are characteristic functions of a lattice tiling set. In this paper, we study the case where A is the group of integer powers of some expanding matrix while B is a finite subgroup of the invertible n×nmatrices. This paper establishes that with any finite group B together with almost any full rank lattice, one can generate a minimally supported frequency composite dilation wavelet system. The paper proceeds by demonstrating the ability to find such minimally supported frequency composite dilation wavelets with a single generator.
منابع مشابه
Minimally Supported Frequency Composite Dilation Parseval Frame Wavelets
Abstract. A composite dilation Parseval frame wavelet is a collection of functions generating a Parseval frame for L2(Rn) under the actions of translations from a full rank lattice and dilations by products of elements of groups A and B. A minimally supported frequency composite dilation Parseval frame wavelet has generating functions whose Fourier transforms are characteristic functions of set...
متن کاملConstruction of a class of trivariate nonseparable compactly supported wavelets with special dilation matrix
We present a method for the construction of compactlysupported $left (begin{array}{lll}1 & 0 & -1\1 & 1 & 0 \1 & 0 & 1\end{array}right )$-wavelets under a mild condition. Wavelets inherit thesymmetry of the corresponding scaling function and satisfies thevanishing moment condition originating in the symbols of the scalingfunction. As an application, an example is provided.
متن کاملMatricial filters and crystallographic composite dilation wavelets
In 2006 Guo, Labate, Lim, Weiss, and Wilson introduced the theory of MRA composite dilation wavelets. We continue their work by studying the filter properties of such wavelets and present several important examples.
متن کاملSmoothing Minimally Supported Frequency (MSF) Wavelets : Part II
The main purpose of this paper is to give a procedure to “mollify” the low-pass filters of a large number of Minimally Supported Frequency (MSF) wavelets, so that the smoother functions obtained in this way are also low-pass filters for an MRA. Hence, we are able to approximate (in the L2-norm) MSF wavelets by wavelets with any desired degree of smoothness on the Fourier transform side. Althoug...
متن کامل